| 1 | initial version |
A possibility is to start with A, B, D and ask for the roots of
D, condidered as a function of degree two in M. The code is:
var( 'p,M' )
A = 18*p^10 - 54*p^9 + 59*p^8 + 130*p^7 - 209*p^6 - 98*p^5 + 407*p^4 + 362*p^3 + 49*p^2 - 16*p + 8
B = 9 \
* (p + 1)^2 \
* (p^4 - 2*p^3 + 2*p^2 + 2*p + 1) \
* (4*p^8 - 52*p^7 + 373*p^6 + 68*p^5 - 445*p^4 + 72*p^3 + 163*p^2 - 48*p+ 9)
D = M^2 - A/2/p^4*M + B/16/p^4
solutions = solve( D==0, M )
for sol in solutions:
print sol
This gives:
M == 1/4*(18*p^10 - 54*p^9 + 59*p^8 + 130*p^7 - 209*p^6 - 98*p^5 + 407*p^4 + 362*p^3 + 49*p^2
-
2*(9*p^8 - 18*p^7 - 7*p^6 + 45*p^5 - 21*p^4 - 74*p^3 - 18*p^2 + 6*p - 2)
*sqrt(p^4 - 2*p^3 + 5*p^2 + 8*p + 4) - 16*p + 8)/p^4
M == 1/4*(18*p^10 - 54*p^9 + 59*p^8 + 130*p^7 - 209*p^6 - 98*p^5 + 407*p^4 + 362*p^3 + 49*p^2
+
2*(9*p^8 - 18*p^7 - 7*p^6 + 45*p^5 - 21*p^4 - 74*p^3 - 18*p^2 + 6*p - 2)
*sqrt(p^4 - 2*p^3 + 5*p^2 + 8*p + 4) - 16*p + 8)/p^4
(Result was manually broken.)
Alternatively, one can ask for the factorization of the discriminant of D, seen as a
polynomial in M. The rest is applying the formula for the roots of an equation
of degree two in the variable M. A possible code for this path is:
R0.<p> = PolynomialRing( QQ )
F0 = R0.fraction_field()
R.<M> = PolynomialRing( F0 )
A = 18*p^10 - 54*p^9 + 59*p^8 + 130*p^7 - 209*p^6 - 98*p^5 + 407*p^4 + 362*p^3 + 49*p^2 - 16*p + 8
B = 9 \
* (p + 1)^2 \
* (p^4 - 2*p^3 + 2*p^2 + 2*p + 1) \
* (4*p^8 - 52*p^7 + 373*p^6 + 68*p^5 - 445*p^4 + 72*p^3 + 163*p^2 - 48*p+ 9)
D = M^2 - A/2/p^4*M + B/16/p^4
print D.discriminant().factor()
latex( D.discriminant().factor() )
This gives:
(81) * p^-8 * (p^4 - 2*p^3 + 5*p^2 + 8*p + 4) * (p^8 - 2*p^7 - 7/9*p^6 + 5*p^5 - 7/3*p^4 - 74/9*p^3 - 2*p^2 + 2/3*p - 2/9)^2
The discriminant has thus in its factorization the posted factors
v, simple factor,F, with the power two.The latex print for the factorized discriminant is displayed here, also after some small change, as follows:
$$\left(81\right) \cdot p^{-8} \cdot (p^{4} - 2 p^{3} + 5 p^{2} + 8 p + 4) \cdot \left(p^{8} - 2 p^{7} - \frac{7}{9} p^{6} + 5 p^{5} - \frac{7}{3} p^{4} - \frac{74}{9} p^{3} - 2 p^{2} + \frac{2}{3} p - \frac{2}{9} \right)^{2} \ .$$
(Use the $81=9^2$ for the squared factor to get the posted F.)
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.