1 | initial version |
Hello!
You can try the option to_poly_solve which gives you:
sage: eqn = sqrt(16-x^2) - (1/4)*x^2-1.28==0;
sage: sol = solve(eqn, x, to_poly_solve=true); sol
[x == -2/5*sqrt(2)*sqrt(5*sqrt(157) - 41), x == 2/5*sqrt(2)*sqrt(5*sqrt(157) - 41)]
sage: n(sol[0].rhs())
-2.63209850458274
sage: n(sol[1].rhs())
2.63209850458274
Another possiblity would be to plot the function for getting the number and estimate values for the solutions. Then you can try to find those roots using find_roots:
sage: eqn.find_root(-3,-2)
-2.632098504582708
sage: eqn.find_root(2,3)
2.632098504582708
Kind regards
Philipp
2 | No.2 Revision |
Hello!
You can try the option to_poly_solve which gives you:
sage: eqn = sqrt(16-x^2) - (1/4)*x^2-1.28==0;
sage: sol = solve(eqn, x, to_poly_solve=true); sol
[x == -2/5*sqrt(2)*sqrt(5*sqrt(157) - 41), x == 2/5*sqrt(2)*sqrt(5*sqrt(157) - 41)]
sage: n(sol[0].rhs())
-2.63209850458274
sage: n(sol[1].rhs())
2.63209850458274
Another possiblity would be to plot the function for getting the number and estimate values for the solutions. Then you can try to find those roots solutions using find_roots:
sage: eqn.find_root(-3,-2)
-2.632098504582708
sage: eqn.find_root(2,3)
2.632098504582708
Kind regards
Philipp