1 | initial version |
f(t) = -t + pi # interval [0, pi]
g(t) = 1/2*f(t*pi) # transformed to interval [-1, 1]
h = lambda x: 2*g(RR(x/pi).frac()) # including retransformation
plot(h,0,3*pi)
2 | No.2 Revision |
EDITED
f(t) = -t + pi # interval [0, pi]
g(t) = 1/2*f(t*pi) # transformed to interval [-1, 1]
# h = lambda x: 2*g(RR(x/pi).frac()) # including retransformation
plot(h,0,3*pi)
h = lambda x: (heaviside(x)-1)*pi + 2*g(RR(x/pi).frac())
plot(h,-3*pi,3*pi)
3 | No.3 Revision |
EDITED
f(t) = -t + pi # interval [0, pi]
g(t) = 1/2*f(t*pi) # transformed to interval [-1, 1]
# h = lambda x: 2*g(RR(x/pi).frac()) # including retransformation
h = lambda x: (heaviside(x)-1)*pi + 2*g(RR(x/pi).frac())
plot(h,-3*pi,3*pi)
UPDATE 2 --- a symbolic function:
f(x) = 1/2*(sign(sin(2*x))*arccos(cos(2*x-pi)) + pi)
plot(f,-3*pi,3*pi,aspect_ratio=1)