Processing math: 100%

First time here? Check out the FAQ!

Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

From Sage v.8.0.beta3,

sage: A = Matrix([[1,2],[3,4]])
sage: n = SR.var('n')  
sage: A^n
[ 1/22*(-1/2*sqrt(33) + 5/2)^n*(sqrt(33) + 11) - 1/22*(1/2*sqrt(33) + 5/2)^n*(sqrt(33) - 11)                                                          2/33*sqrt(33)*(1/2*sqrt(33) + 5/2)^n - 2/33*sqrt(33)*(-1/2*sqrt(33) + 5/2)^n]
[-1/88*(-1/2*sqrt(33) + 5/2)^n*(sqrt(33) + 11)*(sqrt(33) - 3) - 1/88*(1/2*sqrt(33) + 5/2)^n*(sqrt(33) + 3)*(sqrt(33) - 11)                    1/66*sqrt(33)*(1/2*sqrt(33) + 5/2)^n*(sqrt(33) + 3) + 1/66*sqrt(33)*(-1/2*sqrt(33) + 5/2)^n*(sqrt(33) - 3)]

which is

(122(1233+52)n(33+11)122(1233+52)n(3311)23333(1233+52)n23333(1233+52)n188(1233+52)n(33+11)(333)188(1233+52)n(33+3)(3311)16633(1233+52)n(33+3)+16633(1233+52)n(333))

Also in the case of 2x2 matrices there is a derivation of the closed formula for An in this note by K. S. Williams.