| 1 | initial version |
This is not immediately available in Sage, but you should be able to do it with a little work.
sage: R.<x1, x2, x3, x4> = GF(2)[]
sage: R
Multivariate Polynomial Ring in x1, x2, x3, x4 over Finite Field of size 2
sage: b = x1**2 * x3 * x4**3
sage: b.degrees()
(2, 0, 1, 3)
sage: a = Sq(3)
sage: x = a.coproduct_iterated(3)
sage: x
1 # 1 # 1 # Sq(3) + 1 # 1 # Sq(1) # Sq(2) + 1 # 1 # Sq(2) # Sq(1) + 1 # 1 # Sq(3) # 1 + 1 # Sq(1) # 1 # Sq(2) + 1 # Sq(1) # Sq(1) # Sq(1) + 1 # Sq(1) # Sq(2) # 1 + 1 # Sq(2) # 1 # Sq(1) + 1 # Sq(2) # Sq(1) # 1 + 1 # Sq(3) # 1 # 1 + Sq(1) # 1 # 1 # Sq(2) + Sq(1) # 1 # Sq(1) # Sq(1) + Sq(1) # 1 # Sq(2) # 1 + Sq(1) # Sq(1) # 1 # Sq(1) + Sq(1) # Sq(1) # Sq(1) # 1 + Sq(1) # Sq(2) # 1 # 1 + Sq(2) # 1 # 1 # Sq(1) + Sq(2) # 1 # Sq(1) # 1 + Sq(2) # Sq(1) # 1 # 1 + Sq(3) # 1 # 1 # 1
sage: x.support()
[((1,), (2,), (), ()),
((), (), (), (3,)),
((3,), (), (), ()),
((), (), (1,), (2,)),
((), (1,), (), (2,)),
((), (1,), (1,), (1,)),
((), (), (2,), (1,)),
((1,), (1,), (), (1,)),
((2,), (), (), (1,)),
((), (1,), (2,), ()),
((1,), (), (2,), ()),
((1,), (), (), (2,)),
((1,), (1,), (1,), ()),
((), (2,), (1,), ()),
((1,), (), (1,), (1,)),
((2,), (), (1,), ()),
((), (3,), (), ()),
((2,), (1,), (), ()),
((), (2,), (), (1,)),
((), (), (3,), ())]
Now you should sum over the entries in x.support() using the exponents listed in b.degrees(), with the appropriate binomial coefficients.
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.