1 | initial version |
You may try something like
Qp=pAdicField(13)
E=EllipticCurve(Qp,[0,0,0,-3267,45630])
P=E([-21,324])
p=13 #because I am working 13-adically
for m in [1..10]:
R=12104*m*P
S=-2*P
Q=R+S
x=Q[0]
y=Q[1]
W=(81*x^16 + 40662*x^15 + 14353281*x^14 - 460241028*x^13 - 644722959186*x^12 + 39379675354740*x^11 + 5212980804862026*x^10 - 415546630058854656*x^9 - 8202010485984353739*x^8 + 1396767997483732402758*x^7 - 27550698906220673513787*x^6 - 1044392234943529703379852*x^5 + 60770398462922893831446348*x^4 - 1284453663719469166478575296*x^3 + 14183844641879715988450074288*x^2 - 81800517874945025246941522368*x + 196162341839727571433321441856)- (3240*x^14 + 456840*x^13 + 188268624*x^12 - 45834271200*x^11 - 2435651997264*x^10 + 682353767281968*x^9 - 7053953405575680*x^8 - 2553415737499629216*x^7 + 98906717445152189544*x^6 + 1348117411901578667784*x^5 - 162666175355778441465360*x^4 + 4276857451171442758058304*x^3 - 54456600108308451946891776*x^2 + 350065581968511893813480064*x - 918312303919436410092339456)*y
D=W[0]
T=kronecker(D,p)
if T == 1:
print(m)
but when m=3 you have
W=13^-32 + 12*13^-31 + 5*13^-30 + 4*13^-29 + 10*13^-28 + 13^-27 + 10*13^-26 + 8*13^-25 + 3*13^-24 + 11*13^-23 + 11*13^-22 + 9*13^-21 + 12*13^-20 + 4*13^-19 + 6*13^-18 + 13^-17 + O(13^-16)
and D=W[0] will not be defined. The same happens for m=5 also and for many other values I would guess.