1 | initial version |
You can define a function to do the same for arbitrary $n$ (I am just guessing the shape of your matrices)
def MultiMatrix(n):
R = PolynomialRing(GF(2), n, 'x')
M = MatrixSpace(R,n,n)
return M([[R.gen(k)^(2^l) for k in [0..n-1]] for l in [1..n]])
Then we have
MultiMatrix(3)
[x0^2 x1^2 x2^2]
[x0^4 x1^4 x2^4]
[x0^8 x1^8 x2^8]
and
MultiMatrix(4)
[ x0^2 x1^2 x2^2 x3^2]
[ x0^4 x1^4 x2^4 x3^4]
[ x0^8 x1^8 x2^8 x3^8]
[x0^16 x1^16 x2^16 x3^16].