| 1 | initial version |
You could do the following.
sage: k = QQ
sage: n = 10
sage: R = PolynomialRing(k, 'x', n)
sage: R
Multivariate Polynomial Ring in x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 over Rational Field
sage: R.inject_variables()
Defining x0, x1, x2, x3, x4, x5, x6, x7, x8, x9
sage: verts = R.gens()
sage: edges = [(x1, x2), (x3, x7), (x4, x9)]
sage: G = Graph([verts, edges], format='vertices_and_edges')
sage: G
Graph on 10 vertices
sage: J = R.ideal([a * b for a, b in G.edges(labels=False)])
sage: J
Ideal (x4*x9, x3*x7, x1*x2) of Multivariate Polynomial Ring in x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 over Rational Field
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.