1 | initial version |
Hello,
Yes but not as direct as you may want. And the most important is: it really depends on what you want to do with these monoids.
If you put the following in a file like "finite_monoid.py"
from sage.structure.parent import Parent
from sage.categories.semigroups import Semigroups
from sage.structure.element_wrapper import ElementWrapper
class FiniteMonoidFromMultiplicationTable(Parent):
def __init__(self, table):
self._table = table
Parent.__init__(self, category=Semigroups().Finite())
def product(self, x, y):
return self(self._table[x.value][y.value])
def _repr_(self):
return "Finite monoid on {} elements given by its multiplication table".format(len(self._table))
def _element_constructor_(self, data):
data = int(data)
assert 0 <= data < len(self._table):
return self.element_class(self, data)
def __reduce__(self):
return (FiniteMonoidFromMultiplicationTable,
(self._table,))
def __eq__(self, other):
return type(self) is type(other) and \
self._table == other._table
def __ne__(self, other):
return not self == other
class Element(ElementWrapper):
wrapped_class = Integer
def __reduce__(self):
return self.parent(), (self.value,)
In the above code the most important are:
the constructor __init__
and the choice of the category Semigroups().Finite()
the method product
that defines the product of elements from the multiplication table
the subclass Element
and the method _element_constructor_
that tells how to construct elements
Then you can do from the console
sage: from finite_monoid import FiniteMonoidFromMultiplicationTable
sage: F = FiniteMonoidFromMultiplicationTable([[0, 0, 0], [0, 1, 1], [0, 1, 2]])
sage: e0 = F(0); e1 = F(1); e2 = F(2)
sage: print (e0, e1, e2)
sage: e0 * e1 * e2 * e1
0
sage: e1 * e2 * e2
1
sage: TestSuite(F).run() # check thaat everything is fine
If you want to know more, you should have a look at the thematic tutorial http://doc.sagemath.org/html/en/thematic_tutorials/coercion_and_categories.html#coercion-and-categories.
2 | No.2 Revision |
Hello,
Yes but not as direct as you may want. And the most important is: it really depends on what you want to do with these monoids.
If you put the following in a file like "finite_monoid.py"
from sage.structure.parent import Parent
from sage.categories.semigroups import Semigroups
from sage.structure.element_wrapper import ElementWrapper
class FiniteMonoidFromMultiplicationTable(Parent):
def __init__(self, table):
self._table = table
Parent.__init__(self, category=Semigroups().Finite())
def product(self, x, y):
return self(self._table[x.value][y.value])
def _repr_(self):
return "Finite monoid on {} elements given by its multiplication table".format(len(self._table))
def _element_constructor_(self, data):
data = int(data)
assert 0 <= data < len(self._table):
return self.element_class(self, data)
def __reduce__(self):
return (FiniteMonoidFromMultiplicationTable,
(self._table,))
def __eq__(self, other):
return type(self) is type(other) and \
self._table == other._table
def __ne__(self, other):
return not self == other
class Element(ElementWrapper):
wrapped_class = Integer
def __reduce__(self):
return self.parent(), (self.value,)
In the above code the most important are:
the constructor __init__
and the choice of the category Semigroups().Finite()
the method product
that defines the product of elements from the multiplication table
the subclass Element
and the method _element_constructor_
that tells how to construct elements
Then you can do from the console
sage: from finite_monoid import FiniteMonoidFromMultiplicationTable
sage: F = FiniteMonoidFromMultiplicationTable([[0, 0, 0], [0, 1, 1], [0, 1, 2]])
sage: e0 = F(0); e1 = F(1); e2 = F(2)
sage: print (e0, e1, e2)
sage: e0 * e1 * e2 * e1
0
sage: e1 * e2 * e2
1
sage: TestSuite(F).run() # check thaat everything is fine
If you want to know more, you should have a look at the thematic tutorial http://doc.sagemath.org/html/en/thematic_tutorials/coercion_and_categories.html#coercion-and-categories.
EDIT:
Then you can do cartesian products and create morphisms as follows
sage: from sage.categories.morphism import SetMorphism
sage: from finite_monoid import FiniteMonoidFromMultiplicationTable
sage: F1 = FiniteMonoidFromMultiplicationTable([[0, 0, 0], [0, 1, 1], [0, 1, 2]])
sage: F2 = FiniteMonoidFromMultiplicationTable([[0, 1, 2], [1, 1, 2], [2, 2, 2]])
sage: F = cartesian_product([F1,F2])
sage: F((0,1)) * F((1,1))
(0, 1)
sage: TestSuite(F).run()
sage: from sage.categories.morphism import SetMorphism
sage: H = HomF1F2 = Hom(F1, F2, Semigroups())
sage: f = SetMorphism(H, lambda x: F2(2-x.value))
sage: e1_0 = F1(0)
sage: e1_1 = F1(1)
sage: e1_2 = F1(2)
sage: f(e1_1) * f(e1_2) == f(e1_1 * e1_2)
True
3 | No.3 Revision |
Hello,
Yes but not as direct as you may want. And the most important is: it really depends on what you want to do with these monoids.
If you put the following in a file like "finite_monoid.py"
from sage.structure.parent import Parent
from sage.categories.semigroups import Semigroups
from sage.structure.element_wrapper import ElementWrapper
class FiniteMonoidFromMultiplicationTable(Parent):
def __init__(self, table):
self._table = table
Parent.__init__(self, category=Semigroups().Finite())
def product(self, x, y):
return self(self._table[x.value][y.value])
def _repr_(self):
return "Finite monoid on {} elements given by its multiplication table".format(len(self._table))
def _element_constructor_(self, data):
data = int(data)
assert 0 <= data < len(self._table):
return self.element_class(self, data)
def __reduce__(self):
return (FiniteMonoidFromMultiplicationTable,
(self._table,))
def __eq__(self, other):
return type(self) is type(other) and \
self._table == other._table
def __ne__(self, other):
return not self == other
class Element(ElementWrapper):
wrapped_class = Integer
def __reduce__(self):
return self.parent(), (self.value,)
In the above code the most important are:
the constructor __init__
and the choice of the category Semigroups().Finite()
the method product
that defines the product of elements from the multiplication table
the subclass Element
and the method _element_constructor_
that tells how to construct elements
Then you can do from the console
sage: from finite_monoid import FiniteMonoidFromMultiplicationTable
sage: F = FiniteMonoidFromMultiplicationTable([[0, 0, 0], [0, 1, 1], [0, 1, 2]])
sage: e0 = F(0); e1 = F(1); e2 = F(2)
sage: print (e0, e1, e2)
sage: e0 * e1 * e2 * e1
0
sage: e1 * e2 * e2
1
sage: TestSuite(F).run() # check thaat everything is fine
If you want to know more, you should have a look at the thematic tutorial http://doc.sagemath.org/html/en/thematic_tutorials/coercion_and_categories.html#coercion-and-categoriesHow to implement new algebraic structures in Sage?.
EDIT:
Then you can do cartesian products and create morphisms as follows
sage: from sage.categories.morphism import SetMorphism
sage: from finite_monoid import FiniteMonoidFromMultiplicationTable
sage: F1 = FiniteMonoidFromMultiplicationTable([[0, 0, 0], [0, 1, 1], [0, 1, 2]])
sage: F2 = FiniteMonoidFromMultiplicationTable([[0, 1, 2], [1, 1, 2], [2, 2, 2]])
sage: F = cartesian_product([F1,F2])
sage: F((0,1)) * F((1,1))
(0, 1)
sage: TestSuite(F).run()
sage: from sage.categories.morphism import SetMorphism
sage: H = HomF1F2 = Hom(F1, F2, Semigroups())
sage: f = SetMorphism(H, lambda x: F2(2-x.value))
sage: e1_0 = F1(0)
sage: e1_1 = F1(1)
sage: e1_2 = F1(2)
sage: f(e1_1) * f(e1_2) == f(e1_1 * e1_2)
True
4 | No.4 Revision |
Hello,
Yes but not as direct as you may want. And the most important is: it really depends on what you want to do with these monoids.
If you put the following in a file like "finite_monoid.py"
from sage.structure.parent import Parent
from sage.categories.semigroups import Semigroups
from sage.structure.element_wrapper import ElementWrapper
class FiniteMonoidFromMultiplicationTable(Parent):
def __init__(self, table):
self._table = table
Parent.__init__(self, category=Semigroups().Finite())
def product(self, x, y):
return self(self._table[x.value][y.value])
def _repr_(self):
return "Finite monoid on {} elements given by its multiplication table".format(len(self._table))
def _element_constructor_(self, data):
data = int(data)
assert 0 <= data < len(self._table):
len(self._table)
return self.element_class(self, data)
def __reduce__(self):
return (FiniteMonoidFromMultiplicationTable,
(self._table,))
def __eq__(self, other):
return type(self) is type(other) and \
self._table == other._table
def __ne__(self, other):
return not self == other
class Element(ElementWrapper):
wrapped_class = Integer
def __reduce__(self):
return self.parent(), (self.value,)
In the above code the most important are:
the constructor __init__
and the choice of the category Semigroups().Finite()
the method product
that defines the product of elements from the multiplication table
the subclass Element
and the method _element_constructor_
that tells how to construct elements
Then you can do from the console
sage: from finite_monoid import FiniteMonoidFromMultiplicationTable
sage: F = FiniteMonoidFromMultiplicationTable([[0, 0, 0], [0, 1, 1], [0, 1, 2]])
sage: e0 = F(0); e1 = F(1); e2 = F(2)
sage: print (e0, e1, e2)
sage: e0 * e1 * e2 * e1
0
sage: e1 * e2 * e2
1
sage: TestSuite(F).run() # check thaat everything is fine
If you want to know more, you should have a look at the thematic tutorial How to implement new algebraic structures in Sage?.
EDIT:
Then you can do cartesian products and create morphisms as follows
sage: from sage.categories.morphism import SetMorphism
sage: from finite_monoid import FiniteMonoidFromMultiplicationTable
sage: F1 = FiniteMonoidFromMultiplicationTable([[0, 0, 0], [0, 1, 1], [0, 1, 2]])
sage: F2 = FiniteMonoidFromMultiplicationTable([[0, 1, 2], [1, 1, 2], [2, 2, 2]])
sage: F = cartesian_product([F1,F2])
sage: F((0,1)) * F((1,1))
(0, 1)
sage: TestSuite(F).run()
sage: from sage.categories.morphism import SetMorphism
sage: H = HomF1F2 = Hom(F1, F2, Semigroups())
sage: f = SetMorphism(H, lambda x: F2(2-x.value))
sage: e1_0 = F1(0)
sage: e1_1 = F1(1)
sage: e1_2 = F1(2)
sage: f(e1_1) * f(e1_2) == f(e1_1 * e1_2)
True