1 | initial version |
As a partial workaround,
sage: solve(tan(x)==1,x,to_poly_solve='force')
[x == 1/4*pi + pi*z35]
though it does take longer than I would have expected. This discrepancy is worth reporting upstream to Maxima.
2 | No.2 Revision |
As a partial workaround,
sage: solve(tan(x)==1,x,to_poly_solve='force')
[x == 1/4*pi + pi*z35]
though it does take longer than I would have expected. This discrepancy is worth reporting upstream to Maxima.
In Maxima, we get the following which Sage doesn't currently translate, I think.
(%i5) load(to_poly_solve);
Loading maxima-grobner $Revision: 1.6 $ $Date: 2009-06-02 07:49:49 $
(%o5) /Users/.../sage-6.9/local/share/maxima/5.35.1/share/t\
o_poly_solve/to_poly_solve.mac
(%i6) %solve(tan(3*x)=1,x);
2 %pi (12 %z11 + 1)
(%o6) %union(%if(3 tan (-----------------) - 1 # 0,
12
%pi
- 2 %pi %z11 - ---
6
[x = - ------------------], %union()),
2
2 2 %pi 2 %pi
%if(3 tan ((4 %pi %z7 - %i log(sin (---) + cos (---))
12 12
%pi %pi
(sqrt(3) + 1) sin(---) + (sqrt(3) - 1) cos(---)
12 12
+ 2 atan(-------------------------------------------------) + 2 %pi)/4) - 1 #
%pi %pi
(sqrt(3) - 1) sin(---) + (- sqrt(3) - 1) cos(---)
12 12
%pi %pi %pi %pi
sqrt(3) sin(---) sin(---) sqrt(3) cos(---) cos(---)
12 12 12 12 2
0, [x = - (%i (log((---------------- + -------- + ---------------- - --------)
3/2 3/2 3/2 3/2
2 2 2 2
%pi %pi %pi %pi
sqrt(3) sin(---) sin(---) sqrt(3) cos(---) cos(---)
12 12 12 12 2
+ (---------------- - -------- - ---------------- - --------) )/2
3/2 3/2 3/2 3/2
2 2 2 2
%pi %pi %pi %pi
sin(---) cos(---) cos(---) sin(---)
12 12 12 12
sqrt(3) (-------- + --------) -------- - --------
sqrt(2) sqrt(2) sqrt(2) sqrt(2)
----------------------------- - -------------------
2 2
+ %i (atan(---------------------------------------------------) + %pi))
%pi %pi %pi %pi
sin(---) cos(---) sin(---) cos(---)
12 12 12 12
sqrt(3) (-------- - --------) -------- + --------
sqrt(2) sqrt(2) sqrt(2) sqrt(2)
----------------------------- - -------------------
2 2
2
- 2 %pi %z7)/2], %union()), %if(3 tan ((4 %pi %z9
%pi %pi
(sqrt(3) - 1) sin(---) + (sqrt(3) + 1) cos(---)
12 12
+ 2 atan(-----------------------------------------------)
%pi %pi
(sqrt(3) + 1) sin(---) + (1 - sqrt(3)) cos(---)
12 12
2 %pi 2 %pi
- %i log(sin (---) + cos (---)))/4) - 1 # 0,
12 12
%pi %pi %pi %pi
sqrt(3) sin(---) sin(---) sqrt(3) cos(---) cos(---)
12 12 12 12 2
[x = - (%i (log((- ---------------- + -------- - ---------------- - --------)
3/2 3/2 3/2 3/2
2 2 2 2
%pi %pi %pi %pi
sqrt(3) sin(---) sin(---) sqrt(3) cos(---) cos(---)
12 12 12 12 2
+ (- ---------------- - -------- + ---------------- - --------) )/2
3/2 3/2 3/2 3/2
2 2 2 2
%pi %pi %pi %pi
sin(---) cos(---) cos(---) sin(---)
12 12 12 12
sqrt(3) (-------- + --------) -------- - --------
sqrt(2) sqrt(2) sqrt(2) sqrt(2)
+ %i atan2(- ----------------------------- - -------------------,
2 2
%pi %pi %pi %pi
sin(---) cos(---) sin(---) cos(---)
12 12 12 12
-------- + -------- sqrt(3) (-------- - --------)
sqrt(2) sqrt(2) sqrt(2) sqrt(2)
- ------------------- - -----------------------------)) - 2 %pi %z9)/2],
2 2
%union()))