Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

answered 9 years ago

nbruin gravatar image

One structural way of obtaining the answer you want is to first define the homomorphism from the laurent series ring to CC (or whatever ring you want); in your case the one obtained from substituting a particular complex value for x:

sage: s=Hom(R,CC)(2)
sage: s
Ring morphism:
  From: Univariate Laurent Polynomial Ring in x over Complex Field with 53 bits of precision
  To:   Complex Field with 53 bits of precision
  Defn: 1.00000000000000*x |--> 2.00000000000000

Making sure this gets applied to a matrix properly is now just (tedious) bookkeeping:

sage: mm=matrix(s.codomain(),m.nrows(),m.ncols(),[s(n) for n in m.list()] )
sage: mm.eigenvalues()
... UserWarning ...
[2.00000000000000]

Ideally, sage would know how to do the bookkeeping so that the definition of mm above can be written as

sage: mm=m.change_ring(s)
<doesn't work currently>