Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

There seems that eigenvectors_right() is not impolemented for the real algebraic field AA. The workaround is to define your matrix in QQbar:

sage: M = M.change_ring(QQbar)
sage: M.eigenvectors_right()
[(1*I, [
  (1, -1*I)
  ], 1), (-1*I, [
  (1, 1*I)
  ], 1)]
click to hide/show revision 2
No.2 Revision

There seems that eigenvectors_right() is not impolemented for the real algebraic field AA. The workaround is to define your matrix in QQbar:

sage: M = M.change_ring(QQbar)
sage: M.eigenvectors_right()
[(1*I, [
  (1, -1*I)
  ], 1), (-1*I, [
  (1, 1*I)
  ], 1)]

It also works in ZZ:

sage: M = M.change_ring(ZZ)
sage: M.eigenvectors_right()
[(-1*I, [(1, 1*I)], 1), (1*I, [(1, -1*I)], 1)]
click to hide/show revision 3
No.3 Revision

There seems that eigenvectors_right() is not impolemented implemented for the real algebraic field AA. The workaround is to define your matrix in QQbar:

sage: M = M.change_ring(QQbar)
sage: M.eigenvectors_right()
[(1*I, [
  (1, -1*I)
  ], 1), (-1*I, [
  (1, 1*I)
  ], 1)]

It also works in ZZ:

sage: M = M.change_ring(ZZ)
sage: M.eigenvectors_right()
[(-1*I, [(1, 1*I)], 1), (1*I, [(1, -1*I)], 1)]
click to hide/show revision 4
No.4 Revision

There Thanks for reporting, this is now trac ticket 18071 .There seems that eigenvectors_right() is not implemented for the real algebraic field AA. The workaround is to define your matrix in QQbar:

sage: M = M.change_ring(QQbar)
sage: M.eigenvectors_right()
[(1*I, [
  (1, -1*I)
  ], 1), (-1*I, [
  (1, 1*I)
  ], 1)]

It also works in ZZ:

sage: M = M.change_ring(ZZ)
sage: M.eigenvectors_right()
[(-1*I, [(1, 1*I)], 1), (1*I, [(1, -1*I)], 1)]