| 1 | initial version |
This looks indeed like a bug. For numerical integration, you should use numerical_integral:
sage: f(x) = exp(x^3)
sage: numerical_integral(f,1,2)
(275.5109837633117, 3.0587863771115628e-12)
| 2 | No.2 Revision |
This looks indeed like a bug. For numerical integration, you should use the numerical_integral: function:
sage: f(x) = exp(x^3)
sage: numerical_integral(f,1,2)
(275.5109837633117, 3.0587863771115628e-12)
| 3 | No.3 Revision |
This looks indeed like a bug. Thanks for reporting. For numerical integration, you should use the numerical_integral function:
sage: f(x) = exp(x^3)
sage: numerical_integral(f,1,2)
(275.5109837633117, 3.0587863771115628e-12)
Note that, if you want to stay in the symbolic world, sympy seems to do the job:
sage: import sympy
sage: f = f._sympy_()
sage: g = f.integrate() ; g
exp(-I*pi/3)*gamma(1/3)*lowergamma(1/3, x**3*exp_polar(I*pi))/(9*gamma(4/3))
sage: h = g.subs(x,2) - g.subs(x,1)
sage: h
exp(-I*pi/3)*gamma(1/3)*lowergamma(1/3, 8*exp_polar(I*pi))/(9*gamma(4/3)) - exp(-I*pi/3)*gamma(1/3)*lowergamma(1/3, exp_polar(I*pi))/(9*gamma(4/3))
sage: h.n()
275.510983763312 - 1.68744844960818e-21*I
Which is consistent with the numerical approach (the imaginary part is just numerical noise).
| 4 | No.4 Revision |
This looks indeed like a bug. Thanks for reporting. For numerical integration, you should use the numerical_integral function:
sage: f(x) = exp(x^3)
sage: numerical_integral(f,1,2)
(275.5109837633117, 3.0587863771115628e-12)
Note that, if you want to stay in the symbolic world, sympy seems to do the job:
sage: import sympy
sage: f = f._sympy_()
sage: g = f.integrate() ; g
exp(-I*pi/3)*gamma(1/3)*lowergamma(1/3, x**3*exp_polar(I*pi))/(9*gamma(4/3))
sage: h = g.subs(x,2) - g.subs(x,1)
sage: h
exp(-I*pi/3)*gamma(1/3)*lowergamma(1/3, 8*exp_polar(I*pi))/(9*gamma(4/3)) - exp(-I*pi/3)*gamma(1/3)*lowergamma(1/3, exp_polar(I*pi))/(9*gamma(4/3))
sage: h.n()
275.510983763312 - 1.68744844960818e-21*I
Which is consistent with the numerical approach (the imaginary part is just numerical noise).
The bug is reported at trac ticket 17968.
| 5 | No.5 Revision |
This looks indeed like a bug. Thanks for reporting. reporting, it is now trac ticket 17968.
For numerical integration, you should use the numerical_integral function:
sage: f(x) = exp(x^3)
sage: numerical_integral(f,1,2)
(275.5109837633117, 3.0587863771115628e-12)
Note that, if you want to stay in the symbolic world, sympy seems to do the job:
sage: import sympy
sage: f = f._sympy_()
sage: g = f.integrate() ; g
exp(-I*pi/3)*gamma(1/3)*lowergamma(1/3, x**3*exp_polar(I*pi))/(9*gamma(4/3))
sage: h = g.subs(x,2) - g.subs(x,1)
sage: h
exp(-I*pi/3)*gamma(1/3)*lowergamma(1/3, 8*exp_polar(I*pi))/(9*gamma(4/3)) - exp(-I*pi/3)*gamma(1/3)*lowergamma(1/3, exp_polar(I*pi))/(9*gamma(4/3))
sage: h.n()
275.510983763312 - 1.68744844960818e-21*I
Which is consistent with the numerical approach (the imaginary part is just numerical noise).
The bug is reported at trac ticket 17968.
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.