1 | initial version |
If you do this, you get
Docstring:
See "sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots()"
for the documentation of this function.
And then
sage: sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots?
String form: <built-in function small_roots>
Definition: sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots(self, X=None, beta=1.0, epsilon=None, **kwds)
Docstring:
Let N be the characteristic of the base ring this polynomial is
defined over: "N = self.base_ring().characteristic()". This method
returns small roots of this polynomial modulo some factor b of N
with the constraint that b >= N^beta. Small in this context means
...
Does that help?
2 | No.2 Revision |
If you do this, f.small_roots?
, you get
Docstring:
See "sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots()"
for the documentation of this function.
And then
sage: sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots?
String form: <built-in function small_roots>
Definition: sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots(self, X=None, beta=1.0, epsilon=None, **kwds)
Docstring:
Let N be the characteristic of the base ring this polynomial is
defined over: "N = self.base_ring().characteristic()". This method
returns small roots of this polynomial modulo some factor b of N
with the constraint that b >= N^beta. Small in this context means
...
Does that help?