Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

If you do this, you get

Docstring:
    See "sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots()"
    for the documentation of this function.

And then

sage: sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots?

String form:    <built-in function small_roots>
Definition:     sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots(self, X=None, beta=1.0, epsilon=None, **kwds)
Docstring:
   Let N be the characteristic of the base ring this polynomial is
   defined over: "N = self.base_ring().characteristic()". This method
   returns small roots of this polynomial modulo some factor b of N
   with the constraint that b >= N^beta. Small in this context means
...

Does that help?

If you do this, f.small_roots?, you get

Docstring:
    See "sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots()"
    for the documentation of this function.

And then

sage: sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots?

String form:    <built-in function small_roots>
Definition:     sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots(self, X=None, beta=1.0, epsilon=None, **kwds)
Docstring:
   Let N be the characteristic of the base ring this polynomial is
   defined over: "N = self.base_ring().characteristic()". This method
   returns small roots of this polynomial modulo some factor b of N
   with the constraint that b >= N^beta. Small in this context means
...

Does that help?