| 1 | initial version |
About the faces of a planar graph, you can try using the trace_faces method for Graphs. For example:
sage: g=graphs.IcosahedralGraph()
sage: g.is_planar(set_embedding=True)
True
sage: g.trace_faces(g.get_embedding())
[[(10, 11), (11, 7), (7, 10)],
[(6, 4), (4, 3), (3, 6)],
[(5, 6), (6, 1), (1, 5)],
[(2, 8), (8, 1), (1, 2)],
[(9, 8), (8, 2), (2, 9)],
[(8, 0), (0, 1), (1, 8)],
[(3, 2), (2, 6), (6, 3)],
[(0, 7), (7, 11), (11, 0)],
[(2, 1), (1, 6), (6, 2)],
[(8, 9), (9, 7), (7, 8)],
[(4, 10), (10, 3), (3, 4)],
[(5, 4), (4, 6), (6, 5)],
[(11, 4), (4, 5), (5, 11)],
[(10, 4), (4, 11), (11, 10)],
[(9, 3), (3, 10), (10, 9)],
[(7, 0), (0, 8), (8, 7)],
[(11, 5), (5, 0), (0, 11)],
[(10, 7), (7, 9), (9, 10)],
[(2, 3), (3, 9), (9, 2)],
[(5, 1), (1, 0), (0, 5)]]
As @Nathann mentions, there seems to be no code to get the dual. However there seems to be some code for this in trac, perhaps you can start from there.
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.