| 1 | initial version |
It depends on the ring of the matrix. For example, it works for matrices over CDF:
sage: M = matrix(CDF, [[1,2,3],[1,4,6]])
sage: M.SVD()
(
[-0.455252372951 -0.890362441325]
[-0.890362441325 0.455252372951],
[ 8.17345734477 0.0 0.0]
[ 0.0 0.441129270439 0.0],
[ -0.164632267291 -0.986355015482 -2.81388521797e-16]
[ -0.547131320636 0.0913215509714 -0.832050294338]
[ -0.820696980953 0.136982326457 0.554700196225]
)
but not for matrices over QQ:
sage: M = matrix(QQ, [[1,2,3],[1,4,6]])
sage: M.SVD()
AttributeError: 'sage.matrix.matrix_rational_dense.Matrix_rational_dense' object has no attribute 'SVD'
| 2 | No.2 Revision |
It depends on the ring of the matrix. For example, it works for matrices over CDF:
sage: M = matrix(CDF, [[1,2,3],[1,4,6]])
sage: M.SVD()
(
[-0.455252372951 -0.890362441325]
[-0.890362441325 0.455252372951],
[ 8.17345734477 0.0 0.0]
[ 0.0 0.441129270439 0.0],
[ -0.164632267291 -0.986355015482 -2.81388521797e-16]
[ -0.547131320636 0.0913215509714 -0.832050294338]
[ -0.820696980953 0.136982326457 0.554700196225]
)
but not for matrices over QQ:
sage: M = matrix(QQ, [[1,2,3],[1,4,6]])
sage: M.SVD()
AttributeError: 'sage.matrix.matrix_rational_dense.Matrix_rational_dense' object has no attribute 'SVD'
So, the method .SVD() is not implemented for every kind of matrices.
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.