1 | initial version |
Is groebner_basis
the command you need?
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: R.ideal(x^2+y^2-1, 16*x^2*y^2-1).groebner_basis()
[x^2 + y^2 - 1, y^4 - y^2 + 1/16]
This example is from section 9.3 of the book Calcul mathématique avec Sage (in French). The link is to a page where you can download or order the book.
2 | No.2 Revision |
Is groebner_basis
the command you need?
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: R.ideal(x^2+y^2-1, 16*x^2*y^2-1).groebner_basis()
[x^2 + y^2 - 1, y^4 - y^2 + 1/16]
This example is from section 9.3 of the book Calcul mathématique avec Sage / *Computational mathematics with SageMath (in French). (available in French, English, German). The link is to a page where you can download or order the book.
3 | No.3 Revision |
Is groebner_basis
the command you need?
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: R.ideal(x^2+y^2-1, 16*x^2*y^2-1).groebner_basis()
[x^2 + y^2 - 1, y^4 - y^2 + 1/16]
This example is from section 9.3 of the book Calcul mathématique avec Sage / *Computational Computational mathematics with SageMath (available in French, English, German). The link is to a page where you can download or order the book.