|   | 1 |  initial version  | 
For such an easy example, Sage is able to do it:
sage: var('x,c,m,t')
(x, c, m, t)
sage: f(x) = m*x + c
sage: solve([f.integral(x,0,t) == 0],t)
[t == -2*c/m, t == 0]
|   | 2 |  No.2 Revision  | 
For such an easy example, Sage is able to do it:
sage: var('x,c,m,t')
(x, c, m, t)
sage: f(x) = m*x + c
sage: solve([f.integral(x,0,t) == 0],t)
0], t)
[t == -2*c/m, t == 0]
|   | 3 |  No.3 Revision  | 
For such an easy example, Sage is able to do it:it in the following way:
sage: var('x,c,m,t')
(x, c, m, t)
sage: f(x) = m*x + c
sage: solve([f.integral(x,0,t) == 0], t)
[t == -2*c/m, t == 0]
|   | 4 |  No.4 Revision  | 
For such an easy example, Sage is able to do it in the following way:
sage: var('x,c,m,t')
(x, c, m, t)
sage: f(x) = m*x + c
 sage: solve([f.integral(x,0,t) == 0], t)
[t == -2*c/m, t == 0]
sage: solve([f.integral(x,0,t) == 10],t)
[t == -(c + sqrt(c^2 + 20*m))/m, t == -(c - sqrt(c^2 + 20*m))/m]
|   | 5 |  No.5 Revision  | 
For such an easy example, Sage is able to do it in the following way:
sage: var('x,c,m,t')
(x, c, m, t)
sage: f(x) = m*x + c
sage: solve([f.integral(x,0,t) == 0], t)
[t == -2*c/m, t == 0]
sage: solve([f.integral(x,0,t) == 10],t)
10], t)
[t == -(c + sqrt(c^2 + 20*m))/m, t == -(c - sqrt(c^2 + 20*m))/m]
 Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.
 
                
                Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.