1 | initial version |
I don't know if 1 and 4 can be done, but 2 and 3 can.
See the documentation on
For instance
sage: R.<x,y> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in x, y over Rational Field
sage: h = (exp(x) - 1)*(1/(1-4*y))
sage: H = h(x,exp(x*y)*y)
If you feel ready to write your own software, why not instead write a class in Sage for multivariate power series with coefficients expressed as symbolic expressions in the exponents? You could then use all the simplification tools already in Sage.
2 | No.2 Revision |
I don't know if 1 and 4 can be done, but 2 and 3 can.
See the documentation on
For instance
sage: R.<x,y> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in x, y over Rational Field
sage: h = (exp(x) - 1)*(1/(1-4*y))
sage: H = h(x,exp(x*y)*y)
If you feel ready to write your own software, why not instead write a class in Sage for multivariate power series with coefficients expressed as symbolic expressions in the exponents? You could then use all the simplification tools already in Sage.