1 | initial version |
You'll need to let Sage know what the independent variable is by including ivar=t
in your command. Further, since you are solving a system of equations, you need to use desolve_system
.
a,t = var('a,t')
x = function('x', t)
y = function('y', t)
dx2 = 0 == -diff(x,t,2)-(1-a)*((x-a)/(sqrt((x-a)^2 + y^2))^3)-a*((x+1-a)/(sqrt((x+1-a)^2 + y^2))^3)+x+2*diff(y,t,1)
dy2 = 0 == -diff(x,t,2)-(1-a)*(y/(sqrt((x-a)^2 + y^2))^3)-a*(y/(sqrt((x+1-a)^2 + y^2))^3)+y-2*diff(x,t,1)
desolve_system([dx2,dy2],[x,y],ivar=t)
This code gives an error as well.
2 | No.2 Revision |
You'll need to let Sage know what the independent variable is by including ivar=t
in your command. Further, since you are solving a system of equations, you need to use desolve_system
.
a,t = var('a,t')
x = function('x', t)
y = function('y', t)
dx2 = 0 == -diff(x,t,2)-(1-a)*((x-a)/(sqrt((x-a)^2 + y^2))^3)-a*((x+1-a)/(sqrt((x+1-a)^2 + y^2))^3)+x+2*diff(y,t,1)
dy2 = 0 == -diff(x,t,2)-(1-a)*(y/(sqrt((x-a)^2 + y^2))^3)-a*(y/(sqrt((x+1-a)^2 + y^2))^3)+y-2*diff(x,t,1)
desolve_system([dx2,dy2],[x,y],ivar=t)
This code gets farther but gives an error as well.well. This might be related to limitations in Maxima's inverse Laplace transform abilities.
3 | typo in equation |
You'll need to let Sage know what the independent variable is by including ivar=t
in your command. Further, since you are solving a system of equations, you need to use desolve_system
.
a,t = var('a,t')
x = function('x', t)
y = function('y', t)
dx2 = 0 == -diff(x,t,2)-(1-a)*((x-a)/(sqrt((x-a)^2 + y^2))^3)-a*((x+1-a)/(sqrt((x+1-a)^2 + y^2))^3)+x+2*diff(y,t,1)
dy2 = 0 == -diff(x,t,2)-(1-a)*(y/(sqrt((x-a)^2 -diff(y,t,2)-(1-a)*(y/(sqrt((x-a)^2 + y^2))^3)-a*(y/(sqrt((x+1-a)^2 + y^2))^3)+y-2*diff(x,t,1)
desolve_system([dx2,dy2],[x,y],ivar=t)
This code gets farther but gives an error as well. This might be related to limitations in Maxima's inverse Laplace transform abilities.