1 | initial version |
One difference between [2,3,5,7]
and list(primes(2, 10))
when you're running Sage in Python mode is that the types will be different, Python int
s vs. Sage Integer
s:
from sage.all import *
i = [2,3,5,7]
j = list(primes(2, 10))
print i, map(type, i)
print j, map(type, j)
print i == j
gives
[2, 3, 5, 7] [<type 'int'>, <type 'int'>, <type 'int'>, <type 'int'>]
[2, 3, 5, 7] [<type 'sage.rings.integer.Integer'>, <type 'sage.rings.integer.Integer'>, <type 'sage.rings.integer.Integer'>, <type 'sage.rings.integer.Integer'>]
True
This will affect gamma_sq
, for example:
sage: gamma_sq(2, theta1)
1/4*(e^(2*I*pi*theta1) - 2)*(e^(-2*I*pi*theta1) - 2)/((e^(2*I*pi*theta1) - 1)*(e^(-2*I*pi*theta1) - 1))
sage: gamma_sq(2, theta1).subs(theta1=1/2)
9/16
sage: gamma_sq(int(2), theta1)
1/((e^(2*I*pi*theta1) - 1)*(e^(-2*I*pi*theta1) - 1))
sage: gamma_sq(int(2), theta1).subs(theta1=1/2)
1/4
due to truncating division: 1/2 gives 1/2 in QQ in Sage, but 0 in Python. (Note that I had to use the Python-loaded version of the function so that Sage's preparser didn't wrap the 2
; preparser(False)
would ahve worked too.)
I can't reproduce a MemoryError but I only have 5.5 at hand.
Using Integer
s, I get:
Representation Polynomial: x0 + x1 + x2
Prime number 2:
First integral: -16*(e^(2*I*pi*theta2) - 1)*(e^(-2*I*pi*theta2) - 1)*(2*e^(6*I*pi*theta2) + 7*e^(4*I*pi*theta2) - 15*e^(2*I*pi*theta2) + 1)*pi^2*e^(-2*I*pi*theta2)/((e^(2*I*pi*theta2) - 2)*(e^(-2*I*pi*theta2) - 2))
Second Integral: 116*pi^2
Prime number 3:
First integral: -36*(e^(2*I*pi*theta2) - 1)*(e^(-2*I*pi*theta2) - 1)*(12*e^(6*I*pi*theta2) + 52*e^(4*I*pi*theta2) - 20*e^(2*I*pi*theta2) + 31)*pi^2*e^(-2*I*pi*theta2)/((e^(2*I*pi*theta2) - 3)*(e^(-2*I*pi*theta2) - 3))
Second Integral: -256*pi^2
Prime number 5:
First integral: -100*(e^(2*I*pi*theta2) - 1)*(e^(-2*I*pi*theta2) - 1)*(80*e^(6*I*pi*theta2) + 496*e^(4*I*pi*theta2) + 156*e^(2*I*pi*theta2) + 391)*pi^2*e^(-2*I*pi*theta2)/((e^(2*I*pi*theta2) - 5)*(e^(-2*I*pi*theta2) - 5))
Second Integral: -28144*pi^2
Prime number 7:
First integral: -196*(e^(2*I*pi*theta2) - 1)*(e^(-2*I*pi*theta2) - 1)*(252*e^(6*I*pi*theta2) + 2052*e^(4*I*pi*theta2) + 1100*e^(2*I*pi*theta2) + 1751)*pi^2*e^(-2*I*pi*theta2)/((e^(2*I*pi*theta2) - 7)*(e^(-2*I*pi*theta2) - 7))
Second Integral: -282944*pi^2
2 | No.2 Revision |
One difference between [2,3,5,7]
and list(primes(2, 10))
when you're running Sage in Python mode is that the types will be different, Python int
s vs. Sage Integer
s:
from sage.all import *
i = [2,3,5,7]
j = list(primes(2, 10))
print i, map(type, i)
print j, map(type, j)
print i == j
gives
[2, 3, 5, 7] [<type 'int'>, <type 'int'>, <type 'int'>, <type 'int'>]
[2, 3, 5, 7] [<type 'sage.rings.integer.Integer'>, <type 'sage.rings.integer.Integer'>, <type 'sage.rings.integer.Integer'>, <type 'sage.rings.integer.Integer'>]
True
This will affect gamma_sq
, for example:
sage: gamma_sq(2, theta1)
1/4*(e^(2*I*pi*theta1) - 2)*(e^(-2*I*pi*theta1) - 2)/((e^(2*I*pi*theta1) - 1)*(e^(-2*I*pi*theta1) - 1))
sage: gamma_sq(2, theta1).subs(theta1=1/2)
9/16
sage: gamma_sq(int(2), theta1)
1/((e^(2*I*pi*theta1) - 1)*(e^(-2*I*pi*theta1) - 1))
sage: gamma_sq(int(2), theta1).subs(theta1=1/2)
1/4
due to truncating division: 1/2 gives 1/2 in QQ in Sage, but 0 in Python. (Note that I had to use the Python-loaded version of the function so that Sage's preparser didn't wrap the 2
; preparser(False)
would ahve have worked too.)
I can't reproduce a MemoryError but I only have 5.5 at hand.
Using Integer
s, I get:
Representation Polynomial: x0 + x1 + x2
Prime number 2:
First integral: -16*(e^(2*I*pi*theta2) - 1)*(e^(-2*I*pi*theta2) - 1)*(2*e^(6*I*pi*theta2) + 7*e^(4*I*pi*theta2) - 15*e^(2*I*pi*theta2) + 1)*pi^2*e^(-2*I*pi*theta2)/((e^(2*I*pi*theta2) - 2)*(e^(-2*I*pi*theta2) - 2))
Second Integral: 116*pi^2
Prime number 3:
First integral: -36*(e^(2*I*pi*theta2) - 1)*(e^(-2*I*pi*theta2) - 1)*(12*e^(6*I*pi*theta2) + 52*e^(4*I*pi*theta2) - 20*e^(2*I*pi*theta2) + 31)*pi^2*e^(-2*I*pi*theta2)/((e^(2*I*pi*theta2) - 3)*(e^(-2*I*pi*theta2) - 3))
Second Integral: -256*pi^2
Prime number 5:
First integral: -100*(e^(2*I*pi*theta2) - 1)*(e^(-2*I*pi*theta2) - 1)*(80*e^(6*I*pi*theta2) + 496*e^(4*I*pi*theta2) + 156*e^(2*I*pi*theta2) + 391)*pi^2*e^(-2*I*pi*theta2)/((e^(2*I*pi*theta2) - 5)*(e^(-2*I*pi*theta2) - 5))
Second Integral: -28144*pi^2
Prime number 7:
First integral: -196*(e^(2*I*pi*theta2) - 1)*(e^(-2*I*pi*theta2) - 1)*(252*e^(6*I*pi*theta2) + 2052*e^(4*I*pi*theta2) + 1100*e^(2*I*pi*theta2) + 1751)*pi^2*e^(-2*I*pi*theta2)/((e^(2*I*pi*theta2) - 7)*(e^(-2*I*pi*theta2) - 7))
Second Integral: -282944*pi^2