1 | initial version |
sage: var('x y');
sage: (x^2-y^3).subs_expr(x^2==y^3)
0
sage: (x-conjugate(y)).subs_expr(x==conjugate(y))
0
2 | No.2 Revision |
sage: var('x y');
sage: (x^2-y^3).subs_expr(x^2==y^3)
0
sage: (x-conjugate(y)).subs_expr(x==conjugate(y))
0
sage: maxima('x-conjugate(y),x=conjugate(y)')
0
3 | No.3 Revision |
sage: var('x y');
sage: (x^2-y^3).subs_expr(x^2==y^3)
0
sage: (x-conjugate(y)).subs_expr(x==conjugate(y))
0
sage: maxima('x^2-y^3,x^2=y^3')
0
sage: maxima('x-conjugate(y),x=conjugate(y)')
0
4 | No.4 Revision |
sage: var('x y');
sage: (x^2-y^3).subs_expr(x^2==y^3)
0
sage: (x-conjugate(y)).subs_expr(x==conjugate(y))
0
sage: maxima('x^2-y^3,x^2=y^3')
0
sage: maxima('x-conjugate(y),x=conjugate(y)')
0
#replace x^2 by y^3 in x^4-y^6
sage: maxima('ratsubst(y^3,x^2,x^4-y^6)')
0
5 | No.5 Revision |
sage: var('x y');
sage: (x^2-y^3).subs_expr(x^2==y^3)
0
sage: (x-conjugate(y)).subs_expr(x==conjugate(y))
0
sage: maxima('x^2-y^3,x^2=y^3')
0
sage: maxima('x-conjugate(y),x=conjugate(y)')
0
#replace x^2 by y^3 in x^4-y^6
sage: maxima('ratsubst(y^3,x^2,x^4-y^6)')
0
sage: maxima('scsimp(x^4-y^6,x^2=y^3)')
0
6 | No.6 Revision |
sage: var('x y');
sage: (x^2-y^3).subs_expr(x^2==y^3)
0
sage: (x-conjugate(y)).subs_expr(x==conjugate(y))
0
sage: maxima('x^2-y^3,x^2=y^3')
0
sage: maxima('x-conjugate(y),x=conjugate(y)')
0
#replace x^2 by y^3 in x^4-y^6
sage: maxima('ratsubst(y^3,x^2,x^4-y^6)')
0
#simplify according to the rules
sage: maxima('scsimp(x^4-y^6,x^2=y^3)')
0