1 | initial version |
b = 0x027B680AC8B8596DA5A4AF8A19A0303FCA97FD7645309FA2A581485AF6263E313B79A2F5
Z.<x>=GF(2)[]
K.<a>=GF(2^283,'a',modulus=x^283 + x^12 + x^7 + x^5 + 1)
bb=Z(b.digits(2))
E=EllipticCurve(K,[1,1,0,0,bb])
x=0x5f939258db7dd90e1934f8c70b0dfec2eed25b8557eac9c80e2e198f8cdbecd86b12053
y=0x3676854fe24141cb98fe6d4b20d02b4516ff702350eddb0826779c813f0df45be8112f4
n=7770675568902916283677847627294075626569625924376904889109196526770044277787378692871
xx=Z(x.digits(2))
yy=Z(y.digits(2))
PP=E(xx,yy)
print E.is_on_curve(PP[0],PP[1])
print n*PP
#True
#(0 : 1 : 0) --> n is equal to the order of PP