1 | initial version |
Could you change the ring to SR as a workaround?
sage: R = PolynomialRing(QQ, 'x', 2)
sage: x = R.gens()
sage: M = matrix([[x[0],x[1]],[x[1],x[0]]])
sage: M.eigenvalues()
---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call last)
[...]
sage: M.change_ring(SR)
[x0 x1]
[x1 x0]
sage: M.change_ring(SR).eigenvalues()
[x0 - x1, x0 + x1]
2 | No.2 Revision |
Could you change the ring to SR as a workaround?
sage: R = PolynomialRing(QQ, 'x', 2)
sage: x = R.gens()
sage: M = matrix([[x[0],x[1]],[x[1],x[0]]])
sage: M.eigenvalues()
---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call last)
[...]
sage: M.change_ring(SR)
[x0 x1]
[x1 x0]
sage: M.change_ring(SR).eigenvalues()
[x0 - x1, x0 + x1]
EDIT: You might want to use K=R.fraction_field()
and then do something like M.characteristic_polynomial().change_ring(K).roots()
. It doesn't get you the eigenvalues that aren't rational over R
, but the answer you get back in SR
will not be very useful either.