1 | initial version |
You can make the substitution after integration:
sage: var('a b c d y')
sage: ii=integrate((a/x+b*x^c)^d,x,algorithm='mathematica_free')
sage: b=function('b',y)
sage: ii(b=b(y))
-(x^cb(y) + a/x)^dxhypergeometric2f1(-(d - 1)/(c + 1), -d, -(d - 1)/(c + 1) + 1, -x^(c + 1)b(y)/a)/((d - 1)(x^(c + 1)b(y)/a + 1)^d)
but I don't think that sage understands hypergeometric2f1
2 | No.2 Revision |
You can make the substitution after integration:
sage: var('a b c d sage: ii=integrate((a/x+b*x^c)^d,x,algorithm='mathematica_free')
sage: b=function('b',y)
sage: ii(b=b(y))
-(x^cb(y)
but I don't think that sage understands hypergeometric2f1