Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Here you go. I've tested this against all of the graphs in the graph database. This code is adapted from someone's thesis which I found online. I cannot find the author's email address to ask if it can be made GPL or similar.

import cvxopt.base import cvxopt.solvers

# Adapted from Program 4.2, page 44, of the dissertation of Constantinos # Skarakis, http://keithbriggs.info/documents/Skarakis_MSc.pdf def lovasz_theta(G): '''Computes the Lovasz theta function for a graph.'''

Gc = G.complement() n = Gc.num_verts() m = Gc.num_edges()

# This case needs to be handled specially. if n == 1: return 1.0

d = m+n c = -cvxopt.base.matrix([0.0](n-1) + [2.0](d-n)) Xrow = [i(1+n) for i in xrange(n-1)] + \ [b+an for (a, b, _w) in Gc.edge_iterator()] Xcol = range(n-1) + range(d-1)[n-1:] X = cvxopt.base.spmatrix(1.0, Xrow, Xcol, (nn, d-1)) for i in xrange(n-1): X[nn-1, i] = -1.0 sol = cvxopt.solvers.sdp(c, Gs=[-X], hs=[-cvxopt.base.matrix([0.0](nn-1) + [-1.0], (n,n))]) v = 1.0 + cvxopt.base.matrix(-c, (1, d-1)) * sol['x']

return v[0]

# Some options I like to set. # http://abel.ee.ucla.edu/cvxopt/userguide/coneprog.html#algorithm-parameters cvxopt.solvers.options['show_progress'] = False cvxopt.solvers.options['abstol'] = float(1e-10) cvxopt.solvers.options['reltol'] = float(1e-10)

#print lovasz_theta(graphs.CycleGraph(5))