1 | initial version |
To answer John, you can use span_of_basis to preserve the basis:
sage: aa = [0,-1,1/5,-1/19,1/15,-35/57,7/5]
sage: bb = [1,0,-6/5,20/19,-7/5,56/19,-12/5]
sage: cc = [3, -3, -3, 3, -4, 7, -3]
sage: M7=(ZZ^7).span_of_basis([vector(aa),vector(bb)])
sage: M7
Free module of degree 7 and rank 2 over Integer Ring
User basis matrix:
[ 0 -1 1/5 -1/19 1/15 -35/57 7/5]
[ 1 0 -6/5 20/19 -7/5 56/19 -12/5]
sage: cc in M7
False
sage: M7.coordinates(cc)
[3, 3]
2 | No.2 Revision |
To answer John, you can use span_of_basis to preserve the basis:
sage: aa = [0,-1,1/5,-1/19,1/15,-35/57,7/5]
sage: bb = [1,0,-6/5,20/19,-7/5,56/19,-12/5]
sage: cc = [3, -3, -3, 3, -4, 7, -3]
sage: M7=(ZZ^7).span_of_basis([vector(aa),vector(bb)])
sage: M7
Free module of degree 7 and rank 2 over Integer Ring
User basis matrix:
[ 0 -1 1/5 -1/19 1/15 -35/57 7/5]
[ 1 0 -6/5 20/19 -7/5 56/19 -12/5]
sage: cc in M7
False
sage: M7.coordinates(cc)
[3, 3]
Huh, I just noticed that cc in M7 returns the wrong value!
3 | No.3 Revision |
To answer John, you can use span_of_basis to preserve the basis:
sage: aa = [0,-1,1/5,-1/19,1/15,-35/57,7/5]
sage: bb = [1,0,-6/5,20/19,-7/5,56/19,-12/5]
sage: cc = [3, -3, -3, 3, -4, 7, -3]
sage: M7=(ZZ^7).span_of_basis([vector(aa),vector(bb)])
sage: M7
Free module of degree 7 and rank 2 over Integer Ring
User basis matrix:
[ 0 -1 1/5 -1/19 1/15 -35/57 7/5]
[ 1 0 -6/5 20/19 -7/5 56/19 -12/5]
sage: cc vector(cc) in M7
False
True
sage: M7.coordinates(cc)
[3, 3]
Huh, I just noticed that cc in M7 returns the wrong value!