|   | 1 |  initial version  | 
Are the ramified primes the ones which divide the field discriminant? If this is so you can get them by
sage: K.<y> = NumberField(x^4 - 420*x^2 + 40000)
sage: [x[0] for x in list(K.discriminant().factor())]
[5, 41]
|   | 2 |  No.2 Revision  | 
Are the ramified primes the ones which divide the field discriminant? If this is so you can get them by
sage: K.<y> = NumberField(x^4 - 420*x^2 x^2 + 40000)
1)
sage: [x[0] for x in list(K.discriminant().factor())]
[5, 41]
[2, 3]
If splitting means that the prime factors then you can check this like this:
sage: is_split = lambda F,x:sum([t[1] for t in list(F.factor(x))])>1
for example:
sage: K.<y> = NumberField(x^2 + 1)
sage: for x in range(30):
    if is_prime(x):
        print x%4,is_split(K,x)
....:         
2 True
3 False
1 True
3 False
3 False
1 True
1 True
3 False
3 False
1 True
 Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.
 
                
                Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.