| 1 | initial version |
A composition of a nonnegative integer n is an ordered list of positive integers with total sum n, so you can call Compositions, specifying the maximum term:
sage: P = Compositions(4, max_part=2)
sage: P.list()
[[2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]
sage: list(P)
[[2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]
sage: list(Compositions(7, max_part=3))
[[3, 3, 1], [3, 2, 2], [3, 2, 1, 1], [3, 1, 3], [3, 1, 2, 1], [3, 1, 1, 2], [3, 1, 1, 1, 1], [2, 3, 2], [2, 3, 1, 1], [2, 2, 3], [2, 2, 2, 1], [2, 2, 1, 2], [2, 2, 1, 1, 1], [2, 1, 3, 1], [2, 1, 2, 2], [2, 1, 2, 1, 1], [2, 1, 1, 3], [2, 1, 1, 2, 1], [2, 1, 1, 1, 2], [2, 1, 1, 1, 1, 1], [1, 3, 3], [1, 3, 2, 1], [1, 3, 1, 2], [1, 3, 1, 1, 1], [1, 2, 3, 1], [1, 2, 2, 2], [1, 2, 2, 1, 1], [1, 2, 1, 3], [1, 2, 1, 2, 1], [1, 2, 1, 1, 2], [1, 2, 1, 1, 1, 1], [1, 1, 3, 2], [1, 1, 3, 1, 1], [1, 1, 2, 3], [1, 1, 2, 2, 1], [1, 1, 2, 1, 2], [1, 1, 2, 1, 1, 1], [1, 1, 1, 3, 1], [1, 1, 1, 2, 2], [1, 1, 1, 2, 1, 1], [1, 1, 1, 1, 3], [1, 1, 1, 1, 2, 1], [1, 1, 1, 1, 1, 2], [1, 1, 1, 1, 1, 1, 1]]
| 2 | No.2 Revision |
A composition of a nonnegative integer n is an ordered list of positive integers with total sum n, so you can call Compositions, specifying the maximum term:
sage: P = Compositions(4, max_part=2)
sage: P.list()
[[2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]
sage: list(P)
[[2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]
sage: list(Compositions(7, list(Compositions(12, length=7, max_part=3))
[[3, 3, 1], [3, 2, 2], [3, 2, 1, 1], [3, 1, 3], [3, 1, 2, 1], [3, 1, 1, 2], [3, 1, 1, 1, 1], [2, 3, 2], [2, 3, 1, 1], [2, 2, 3], [2, 2, 2, 1], [2, 2, 1, 2], [2, 2, 1, 1, 1], [2, 1, 3, 1], [2, 1, 2, 2], [2, 1, 2, 1, 1], [2, 1, 1, 3], [2, 1, 1, 2, 1], [2, 1, 1, 1, 2], [2, 1, 1, 1, 1, 1], [1, 3, 3], [1, 3, 2, 1], [1, 3, 1, 2], [1, 3, 1, 1, 1], [1, 2, 3, 1], [1, 2, 2, 2], [1, 2, 2, 1, 1], [1, 2, 1, 3], [1, 2, 1, 2, 1], [1, 2, 1, 1, 2], [1, 2, 1, 1, 1, 1], [1, 1, [3, 3, 2], [1, 1, 3, 1, 1], [1, 1, 2, 3], [1, 1, 2, 2, 1], [1, 1, 2, 1, 2], [1, 1, 2, 1, 1, 1], [1, 1, 1, [3, 3, 1], [1, 1, 1, 2, 2], [1, 1, 1, 2, 1, 1], [1, 1, 1, 1, 3], [1, 1, 1, 1, 2, 1], [1, 1, 1, 1, 1, 2], [1, 1, 1, 1, 1, 1, 1]]
...
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.