Univariate Polynomial Multiplication

i like this post (click again to cancel)
1
i dont like this post (click again to cancel)

What algorithms does sage use for univariate polynomial multiplication?

In particular, I am curious about the algorithm used for multiplication over finite fields and polynomials with coefficients in Z or Q.

More generally, is there an easy way to look under the hood and trace down the exact functions being called in the event I have a question like this again?

asked Jul 21 '11

anonymous user

Anonymous

3 Answers:

i like this answer (click again to cancel)
2
i dont like this answer (click again to cancel)

For integer polynomials, FLINT is used to do the multiplication. We look at the _mul_ method since in Sage, __mul__ is used to handle coercion and then dispatches to _mul_.

sage: R.<x> = ZZ[]
sage: x._mul_??
...
cpdef RingElement _mul_(self, RingElement right):
    r"""
    Returns self multiplied by right.

    EXAMPLES::

        sage: R.<x> = PolynomialRing(ZZ)
        sage: (x - 2)*(x^2 - 8*x + 16)
        x^3 - 10*x^2 + 32*x - 32
    """
    cdef Polynomial_integer_dense_flint x = self._new()
    sig_on()
    fmpz_poly_mul(x.__poly, self.__poly,
            (<Polynomial_integer_dense_flint>right).__poly)
    sig_off()
    return x

You can do a similar check to see that FLINT's fmpq_poly_mul is used for polynomials over the rationals.

The univariate polynomials over finite fields different based on the size of the field. For example, for small primes, FLINT is used:

sage: R.<x> = GF(next_prime(2^5))[]
sage: type(x)
<type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>

But for larger primes, NTL is used:

sage: R.<x> = GF(next_prime(2^64))[]
sage: type(x)
<type 'sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_p'>

To find out the exact algorithm / heuristics used, you'll need to delve into those packages.

link

posted Jul 21 '11

Mike Hansen gravatar image Mike Hansen flag of United States
3880 23 46 84
i like this answer (click again to cancel)
2
i dont like this answer (click again to cancel)

This is a pretty broad question, and I'm certainly not an expert in this area, but maybe I can get you pointed in the right direction. It's easy to look under the hood, but maybe (depending on your experience) not so easy to pin down exactly what's being called. Here's how I proceeded:

sage: R.<t> = PolynomialRing(ZZ) # make the kind of ring I want to check
sage: f = R.random_element(); f  # and an element
3*t^2 + t + 65

See what kind of objects they are:

sage: type(R)
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain'>
sage: type(f)
<type 'sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint'>

You can browse these source files in your local sage install at $SAGE_ROOT/devel/sage-main/sage/rings/polynomial, or you can browse them online (linked from the "Source Code" section of the main Sage Development page).

Of course it helps if you know where to look; multiplication is implemented (often, including this case) by the _mul_ method, so you can check it directly with

sage: f._mul_??

This will display the relevant part of the source code. There, you will see that this particular multiplication is implemented by fmpz_poly_mul -- this is a FLINT method, and you'd have to look at the FLINT source if you want to go further in this hunt . . .

A similar procedure will, I think, get you started with finding the implementations of the other multiplication algorithms you mentioned. Good luck!

link

posted Jul 21 '11

niles gravatar image niles
3725 7 45 104
http://nilesjohnson.net/
Oh, I shouldn't have taken so long to write this answer! niles (Jul 21 '11)
i like this answer (click again to cancel)
0
i dont like this answer (click again to cancel)

Thank you for the quick help. This is exactly what I was looking for.

link

posted Jul 21 '11

mathmajor gravatar image mathmajor
1 1 3

Your answer

Please start posting your answer anonymously - your answer will be saved within the current session and published after you log in or create a new account. Please try to give a substantial answer, for discussions, please use comments and please do remember to vote (after you log in)!
Login/Signup to Post

Question tools

Stats:

Asked: Jul 21 '11

Seen: 227 times

Last updated: Jul 21 '11

powered by ASKBOT version 0.7.22
Copyright Sage, 2010. Some rights reserved under creative commons license.